MTC2
Multi-purpose winding testers
A deeper look into the winding – the surge voltage tester par excellence

The MTC2 is a high-end surge voltage tester – no other tester offers such a variety of applications. With the MTC2 you precisely analyze coils, stators, armatures, and all other kinds of winding goods according to the latest technology-without any compromises.

Innovations, technical leadership and a patented surge voltage evaluation method characterize the MTC-2 surge voltage testers of the 6th generation. You can choose from a finely graded tester variety from 6KV to 50KV.

Based on 25 years of experience, extensive know-how and a consistent optimization you purchase a “state-of-the-art surge voltage tester”.

The housing variants are ideally suitable for universal usage and almost every application. Whether stationary application or mobile operation-the MTC2 provides the right solution.

KEY-FACTS

- Digital surge voltage test with patented evaluation method
- Surge voltage with 100nF/200nF (device-dependent) and up to 2000A surge current
- Partial discharge analysis to detect certain insulation faults according to standards
- Resistance measurement in 4-wire-technology with temperature compensation
- Insulation resistance test with automatic PI-measurement
- Inductance test | LCR inductance measuring bridge
- Fully automatic switchover between different test methods
- 4 winding connections (windings and neutral point) plus frame connection
- Automatically running test with automated GO/NO GO comparison
- Integrated armature test assistant, armature adapter and armature booster
- Remote-controlling of an AC-High voltage tester and scanning the test results
- Integrated PC with Windows®
- Simple and intuitive operation by touch screen or mouse and keyboard
- Option for remote maintenance and calibration
- Data base for numerous test programs and test results
A deeper look into the winding – the surge voltage tester par excellence
Surge voltage up to **50KV**
Analysis of motors and generators up to 500MW
2000A surge current
125 joule surge energy
Rise time up to 60ns
Automatic test method switchover
Unique evaluation methods
Fully integrated partial discharge test
Fields of application

Motor repair | Manual inspection

The MTC2 is immediately ready for use to perform spontaneous measurements. By means of the unique manual mode all test methods (resistance-, surge voltage-, insulation resistance-, and the partial discharge test) can be started. It is not necessary to parameterize the tests in advance. You only have to adjust the requested test voltage and the test is ready to be started.

The software always delivers you the current test results, similar to a multimeter. Thus, an evaluation of the winding and the insulation system is immediately possible and you can instantly decide, if and which part of the motor has to be repaired.

Motor repair | Fully automatic inspection

A great variety of motors and generators can be automatically inspected in the repair sector. For this, the MTC2 offers a fully automatic mode, which performs the test according to a freely definable test sequence. The tester evaluates the measuring results automatically and indicates the result by means of a GO/NO GO signal in the display. For the evaluation of the measuring results no technically qualified personnel is required!

The MTC2 is already equipped with a variety of test plans for any nominal voltage class. As a result, you can also start at once in the fully automatic mode. Nearly unlimited test sequences may be entered, which can be individually adapted to and optimized for your test application.

Motor production

The MTC2 can be easily integrated in a production line. Its dimensions are based on a 19” housing, which allows a perfect implementation of the tester. The additional interfaces do not only allow a complete remote control but also a connection to a master computer.

Nearly unlimited test sequences for different types of test objects may be entered in the MTC2 and selected and started via interface. All test results can be retrieved via interface and may be stored in a central database via master computer. Furthermore it is possible to store the results locally on the tester or directly in the network.

Furthermore, a variety of motor data can be entered, which will be printed on the SCHLEICH standard protocol in addition to the measuring results.
The basic device – State-of-the-art technology, robustly packed

The integration of so many different test methods in one tester is unique. All necessary tests are included in only one compact device. The system offers a clearly arranged test overview and the intuitive operating concept facilitates the operator’s daily working environment.

The complete hard-and software is developed by SCHLEICH itself and according to our motto „Made in Germany“. Our innovations set technological standards for the modern winding inspection.

- High voltage on
- Emergency stop
- 8,4”-touch display
 - Brilliant color display
 - Robust, resistive touch screen
- Time basis amplitude
- High voltage adjustment
- Power connection
- Connection foot switch
- Connection temperature probe
- Integrated PC
 - Maintenance-free industrial PC
 - Extended working temperature range
 - Fanless
 - WIN7 Professional® operating system
 - 2GB RAM
 - 256 GB HDD
 - Connections: 3x USB, RS232, keyboard, VGA-monitor
Power on

Ethernet
- Remote maintenance (service & support)
- Online-calibration

MTC2 6KV
Measuring ports on the tester’s rear side
- 6KV-measuring leads, pluggable
- 4mm plug for alligator clips

MTC2 6KV…50KV
Measuring ports on the tester’s rear side
- Measuring leads firmly installed
- 4mm plug for alligator clips

MTC2 6KV…50KV
Control plug (basic equipment) on the tester’s rear side
- Connection to a safety-circuit
- GO/NO GO output
- Start input
- Warning light output
- Connection to optional devices:
 - Armature booster | rotor-stator-check

Made in Germany
The surge voltage test

With the excellent evaluation methods of the MTC2 you are able to detect even the smallest faults. The variety of evaluation methods, which can be combined in any way you like, allows a detailed, reliable, and very exact fault analysis. By this, misinterpretations are reduced to a minimum.

The parameterization to the signals to be evaluated takes place almost automatically. The tester independently selects the most convenient settings for the signal to reach the maximum sensitivity.

Additionally the MTC2 is equipped with an automatic voltage correction which assures, that the test voltage is always perfectly adjusted, depending on the particular test object. These features significantly facilitate the fault analysis. Thus, a reliable statement regarding the motor’s condition can be promptly made.

The evaluation is based on a reference signal which has been taught-in before or on an automatic comparison between all three phases among each other.

<table>
<thead>
<tr>
<th>Tolerance band</th>
<th>Error area</th>
<th>EAR</th>
<th>Difference in area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The tolerance band belongs to the simpler evaluation methods, at which an envelope curve is placed around the signal. The surge wave has to be within a certain tolerance band.

The error area is the differential area between 2 signals (surge waves). The difference in area between reference surge wave and currently measured surge wave is automatically determined and the deviation is indicated in %.

The difference in area is the subtraction of the single areas below the two surge waves. The result leads to a deviation in percentages compared to the reference area.

<table>
<thead>
<tr>
<th>Inductance</th>
<th>Peak-to-peak</th>
<th>Phase comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The inductance is calculated from the surge voltage test’s signal. The result is indicated in "H".

At the peak-to-peak-method the test voltage is gradually increased. If a bigger deviation occurs between two steps, the test is stopped. The deviation from step to step is indicated in %.

At the phase comparison all three phases of a motor are automatically compared with each other and displayed in a diagram. In this way the symmetry can be directly determined and evaluated. Normally this method is used in the motor repair sector.
The relation between reference surge wave and currently measured surge wave is automatically determined and the deviation is indicated in %.

The difference in frequency between reference surge wave and currently measured surge wave is automatically determined and the deviation is indicated in %.

The difference in the attenuation course between reference surge wave and currently measured surge wave is automatically determined and the deviation is indicated in %.

Reference comparison

The comparison to a reference is possible, in case a good test object has been taught-in before. Normally this method is used in production.

ABSOLUTE SURGE POWER

Correlation (patented by SCHLEICH)

Frequency

Attenuation

125 joule surge energy
2000A surge current
Rise time up to 60ns
Patented evaluation method
The insulation resistance test which is integrated in the basic device is specifically intended for testing electrical drives. The test voltage is automatically switched on the measuring lead, which is also used for the surge voltage- and the resistance test. A re-clamping at the test object during the single measurements is not necessary. The switchover takes automatically place in the tester up to a test voltage of 50KV.

The software provides preconfigured test programs for PI, DAR, High voltage DC, Mega Ohm and step voltage, which clearly facilitates the operation of the tester. To be able to configure the tester also for special applications, all parameters may be adjusted separately.

The MTC2 is very flexible in its application-no matter whether it is used in production or in the service and repair sector.

• Adjustable test time
• Ramp and test time adjustable
Adjustable step voltage
• Test time per step
• Final test time at the last step
• Voltage step size per step
• Start voltage at the first step

PI | DAR test

Key Facts
• Adjustable minimum current monitoring (current connection control)
• Fully automatic or manual process
• Burning mode
• Automatic discharge
• Selectable display variants:
 - Voltage-current
 - Resistance-current
 - Resistance-voltage

High voltage DC up to 50KV
PI | DAR
Up to 100 GigaOhm
Optional extension:
The resistance test

By extending the MTC2 with the resistance test it is possible to test the phase resistances of an electric motor fully automatically. A re-clamping is not required for the resistance test. The test is automatically performed via the measuring leads which are already connected to the test object.

The evaluation is either based on a direct set value specification or on the symmetry ratio (deviation) of all three phases.

KEY-FACTS

- Highly accurate resistance measurement in 4-wire-technology
- Same measuring leads in use as at the HV-test
- No re-clamping required
- Manual or fully automatic resistance test
- Automatic GO/NO GO evaluation
- Firm set value entry possible
- Room temperature compensation

Resistance test at a 3-phase machine
- Automatic measurement of all three phase resistances
- Deviation determination

Resistance test e.g. at an air-core coil or bar-to-bar
- Comparison of several individual coils possible
- Resistance measurement of DC-armatures (bar-to-bar)

Room temperature compensation

<table>
<thead>
<tr>
<th>Model MTC2</th>
<th>6KV/12KV/15KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>0…100°C</td>
</tr>
<tr>
<td>Part no.</td>
<td>401404</td>
</tr>
</tbody>
</table>

- Adjustable reference temperature
- Compensation of temperature-dependence of copper and aluminium
- Allows the comparison between nominal and actual values, also at fluctuating temperatures

› Note: Extension to the resistance test

Resistance test

<table>
<thead>
<tr>
<th>Model MTC2</th>
<th>6KV</th>
<th>12KV/15KV</th>
<th>25KV/30KV/40KV/50KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>1mOhm …100Kohm</td>
<td>1mOhm …100Kohm</td>
<td>1mOhm …100Kohm</td>
</tr>
<tr>
<td>Resolution</td>
<td>1µohm</td>
<td>1µohm</td>
<td>1µohm</td>
</tr>
<tr>
<td>4-wire-technology</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Automatic switchover</td>
<td>yes</td>
<td>yes</td>
<td>no (optionally available)</td>
</tr>
<tr>
<td>Part no.</td>
<td>4023103</td>
<td>4023193</td>
<td>4023150</td>
</tr>
</tbody>
</table>

Further informations: www.schleich.com/en/mtc2
Optional extension: The high-voltage test AC

The high-voltage test is integrated in the MTC2 and automatically switched on the measuring leads. A re-clamping is not required. The test is automatically carried out with the measuring leads, which are already connected to the test object.

As an option, also the high-voltage tester of the GLP1- and GLP2-class can be connected with the MTC2 via the RS232-interface. The test results are then automatically transferred from the external tester to the MTC2.

KEY-FACTS

- High-voltage test according to standard
- Fully-electronic control
- Fast switch-off at flashover
- Freely adjustable ramps
- Automatic GO/NO GO evaluation

Test with and without voltage ramp profile

<table>
<thead>
<tr>
<th>Voltage Profile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test with voltage ramp profile</td>
</tr>
<tr>
<td></td>
<td>Test without voltage ramp profile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High-voltage test AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test voltage</td>
</tr>
<tr>
<td>Test current</td>
</tr>
<tr>
<td>Fast disconnection</td>
</tr>
<tr>
<td>Part no.</td>
</tr>
</tbody>
</table>
Optional extension:
The partial discharge test according to IEC 61934

The partial discharge test serves for checking the quality of windings. The test can be performed in combination with the high-voltage test (sine wave) as well as with the surge test. The main idea is detecting any quality faults in windings that cannot be detected with conventional high-voltage test or surge testing.

Due to the coupling technology combined with a high-frequency filter technology the system is free of disturbances. It is highly useful for on-site or production applications. The partial discharge measuring (filtering and analysis) is completely integrated in the MTC2. Only the uncoupling (measuring) of the actual partial discharge signal is performed outside the tester. This is necessary for the respective measuring situation.

Testing at an open stator winding is carried out with a highly sensitive measuring antenna and at a completely assembled motor with a special coupler. The antenna as well as the special coupler can be optionally connected to the MTC2 making the MTC2 well equipment for most applications.

KEY-FACTS

- Determination of the inception and extinction voltage according to IEC 61934
- High reproducibility due to special filter technology
- Special coupling technology for measuring completely assembled motors
- Free of any disturbances due to special high-frequency filter technology
- No shielding of the test area necessary
- Partial discharge test up to 25KV
- Qualification of enameled copper wire (twisted pair), Enamel-insulation and Impregnation procedure
The test is performed either manually or automatically. In the manual mode the operator increases the voltage continuously while monitoring the partial discharge signal. Via a test sequence the automatic operation provides an analysis of all three phases. The following values are determined per phase:

- **PDIV** (inception voltage)
- **PDEV** (extinction voltage)
- **RPDIV** (repeating inception voltage)
- **RPDEV** (repeating extinction voltage)

Here it is also not necessary to run the complete ramp. If it has to be distinguished quickly between "GO" and "NO GO" in production, it can be operated with a preset test voltage.

The test is performed automatically via a previously setup test sequence. A ramp function is run, in which the test voltage is continuously increased. As soon as the first partial discharges occur, this voltage is stored as PDIV (inception voltage).

Next, the voltage is reduced until the partial discharge disappears. This point is identified as PDEV (extinction voltage) and also stored. Due to preferably short test times in production the partial discharge’s intensity can also be determined at a preset voltage. Thus it can be quickly distinguished between “GO” and “NO GO”.

In addition it is also possible to perform the test manually. Here the operator continuously increases the voltage while monitoring the partial discharge signal.

The measuring at a completely assembled motor cannot be performed via an antenna as the high-frequent signals are shielded by the closed motor cabinet. In these cases the measuring is performed via a special coupler which is attached to the measuring lead.

The combination of these two PD-test methods is unique in the world!
Optional extension:
Armature booster

For the armature test an additional armature booster is available for MTC2-testers. This is necessary for testing of larger, low-inductive DC-armatures. With the armature booster the surge current is increased by factor 10, to find short-circuits and insulation faults between bars.

The evaluation is performed automatically via the patented instrument developed by SCHLEICH.

The armature booster is connected to the MTC2's measuring leads. At the booster's output, there are two solid test probes with an integrated start button available. In addition a warning light shows whether the clamps are voltage-free and an acoustic signal indicates whether the test is GO or NO GO.

The armature assistant is a tool to create test programs. After entering the required data (quantity bars, test voltage, etc.) a corresponding test plan is generated.

<table>
<thead>
<tr>
<th>Booster-Pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model MTC2</td>
</tr>
<tr>
<td>Output current</td>
</tr>
<tr>
<td>Output voltage</td>
</tr>
<tr>
<td>4-wire-technology</td>
</tr>
<tr>
<td>Pluggable</td>
</tr>
<tr>
<td>Part no.</td>
</tr>
</tbody>
</table>

Further informations: www.schleich.com/en/mtc2
The test is performed with two test probes that are pushed on the bars (bar to bar method). Here the test can be performed directly between bar-bar or between ¼ of the commutator. The test is started via the two start buttons in the test probes.

The test is evaluated via an automatic test process which guides the operator through the measuring. It can also be tested manually without the preset test step sequence. With both methods the MTC2 compares the surge graphs to the previously stored reference measurements. It is possible to remove any faults and repeat the test at these points again.
Optional extension:

Squirrel cage

Ideal test accessory for checking and locating faults in squirrel-cage motors, armatures, stators, and generators. The accessory operates in combination with the MTC2.

<table>
<thead>
<tr>
<th>Rotor-stator-check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model MTC2</td>
</tr>
<tr>
<td>Test probes small</td>
</tr>
<tr>
<td>Test probes medium</td>
</tr>
<tr>
<td>Test probes large</td>
</tr>
<tr>
<td>Part no.</td>
</tr>
</tbody>
</table>

»**Note:** in this set all 3 test probe sizes are included!
Two test probes are used for the test. They are connected at the test object's exterior above the slots. The first probe (Transceiver) transmits a signal to the test object; the second probe (Receiver) receives the signal. The receipt signal is measured in the MTC2 and the signal strength is displayed on the screen.

Number the individual slots in advance. At the subsequent measuring, position the probes above the individual slots at the test object's opposite outer edges in a way that the maximum signal strength is indicated in the MTC2. Using the MTC2 software, after finding the best probe position, store the signal in the corresponding slot number. Perform these measurements at each slot storing all the data.

During measuring, the MTC2 compares the available values and detects any irregularities of the resistances within the slots. The slots’ measuring values should all be the same. If the differences are too high there is a fault. Based on slot numbering, locate the defect quickly and efficiently, making repair easier.
Testing in the manual mode

In the manual mode the different test methods (surge voltage, insulation resistance, resistance, High voltage AC...) are called up by the operator in any order. Suitable for each test method an operator-friendly display is indicated. It is not necessary to enter more data or parameters for testing.

Before starting the single tests the operator selects the type of test object. The tester automatically adjusts itself to the respective test configuration.

The following selection is possible:

• Single coil
• single-phase winding with three leads
• single-phase winding with four leads
• Winding with delta or star connection and three leads
• Winding with star connection and a separate star point with four connections

During each test method, depending on the type of test object, measuring values are collected at several connections. The MTC 2 automatically collects the measuring values in a result overview.

The MTC 2 offers 2 approaches to perform the manual measurements:

• The unique auto test can be easily used to collect the measuring values. The MTC 2 automatically performs all integrated test methods. The test voltage level is automatically calculated from the test object’s formerly entered nominal voltage. Afterwards the MTC2 automatically analyzes the collected results and indicates, if the winding is o.k. or not o.k. This approach is particularly suitable for inexperienced operators.

• The operator is also able to perform the single measurements and collect the measuring results independently. After finishing the measurements, the MTC2 automatically also provides the operator the analysis of the measuring results.

The test program – only 5 steps for the perfect result
In addition to the collected measuring values further, different name plate data can be entered. As each company has its own idea regarding name plate data to be stored, the MTC2 can be easily configured according to your expectations. Up to 30 different name plate data can be freely configured.

As soon as all measuring values and name plate data are collected, all data is stored in the Access®-data base integrated in the tester. The data may be printed either immediately or at a later time. In case you want to print the data only later, the measuring results can be easily searched for in the data base. As search key, numerous name plate data as well as motor description and serial no. can be used.

KEY-FACTS

- Immediate testing without parameterization
- Possibility to enter motor data
- Protocol print after testing
- Easy and intuitive operation
Testing in the automatic mode

In the automatic mode all tests, contained in the tester, are automatically carried out. All measuring results are continuously indicated and evaluated. That is why a direct evaluation during running tests is already possible. A clear GO/NO GO notification visualizes the automatic evaluation.

The test sequence’s adjustment is carried out by adding or deleting test steps. In this way the test program can be perfectly adapted to different tasks. Each single test step can be edited and adjusted separately by double-clicking on it.

An integrated user management ensures that only authorized persons are able to execute the changes in the test steps. The work instructions which may be additionally integrated make the MTC2 a tester according to ISO9001.

Traceability

The traceability allows you to receive clear and complete information about the complete production process, even afterwards.

KEY-FACTS:
• Clear traceability
• Marking and identification
• Scanning of DMCs (Data matrix code)
• Networking of SCHLEICH testers

For more information see: www.schleich.com/en/traceability
The automatic mode in the repair sector

Even new motors may be easily inspected with the SCHLEICH automatic mode. Therefore the test program automatically adapts to the new motor. This is how a variety of different motors can be fully automatic tested without additional parameterization.

The MTC2 contains fully automatic test plans for a variety of different motor nominal voltage classes, which significantly facilitate testing. Only a test plan, e.g. for a 480V motor, has to be loaded and the MTC2 fully automatically inspects the complete machine, followed by a GO/NO GO evaluation.

KEY-FACTS:
• Automatic GO/NO GO evaluation
• The test programs adapts to the motor
• Pre-defined test program
• Testing possible without special knowledge
• Automatic test logging
• Integrated user management

KEY-FACTS

• Fully automatic testing
• Simple GO/NO GO evaluation
• Easy and intuitive operation
• Clear display presentation
• Printing, logging and evaluating
• Integrated user- and setter notifications
• High data safety and long-time storage of data
• Printing of labels, name plates etc.
• Scanning of DMCs (Data matrix code)
The test protocol

All test results can be printed on the modern standard protocol either directly after finishing a test or later.

The protocol language can be set individually before printing. Standard languages are German, English, French, Dutch, Spanish, Italian, and Russian.

Depending on your needs, the protocol can be printed in different ways:

- Printing on paper
 You can connect a Win7®-compatible printer to the MTC2. As usual in Windows®, only a click on the printer symbol is required and all test results are automatically printed.

- Creating a PDF-file
 On request, the MTC2 creates a PDF-file which is automatically stored on a USB-stick, the internal hard drive or under any network path. The storage on the USB-stick happens fully automatic in the root directory. “Copy and paste” in Windows® is not necessary.

- Creating a CSV-file
 Optionally, the MTC2 can also automatically generate a CSV-file after a test program. The file is stored under any network path. The data which is transferred into the CSV-file are freely configurable and can be adapted to your requirements.
Detailed view resistance

- Phase resistances compensated to 20°C / 68°F
- Winding temperature
- Deviation
- Set values (if existing)

Detailed view insulation resistance

- Signal course:
 - Voltage-current | resistance-current | resistance-voltage
- Insulation resistance at measured temperature
- Insulation resistance compensated to 40°C / 104°F
- Set values (if existing)

Detailed view partial discharge test

- Signal courses of all three phases in a single diagram
- Display of the symmetry of all 3 phases
- Percentage deviation to reference coil
- Set values (if existing)

KEY-FACTS

- Customizable protocol with your company data and your logo
- Immediate printing on a Windows®-compatible printer
- Generation of a PDF-file
- Automatic storage on a USB-stick
- Test protocol in numerous languages
Technical data
Product overview

MTC2-portable 6KV MTC2-Caddy 6KV|12KV|15KV MTC2-module MTC2 6KV|12KV|15KV

Technical specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>art. no.</th>
<th>surge voltage & auto. analysis</th>
<th>partial discharge</th>
<th>High voltage DC</th>
<th>Insulation resistance</th>
<th>Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC2-portable-6KV</td>
<td>4023169</td>
<td>6KV 6KV 6KV</td>
<td></td>
<td>6KV 6KV 6KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-Caddy-6KV</td>
<td>4023170</td>
<td>6KV 6KV 6KV</td>
<td></td>
<td>6KV 6KV 6KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-6KV</td>
<td>4023101</td>
<td>6KV 6KV 6KV</td>
<td></td>
<td>6KV 6KV 6KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-Caddy-12KV</td>
<td>4023149</td>
<td>12KV 12KV 12KV</td>
<td></td>
<td>12KV 12KV 12KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-12KV</td>
<td>4023100</td>
<td>12KV 12KV 12KV</td>
<td></td>
<td>12KV 12KV 12KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-Caddy-15KV</td>
<td>4023171</td>
<td>15KV 15KV 15KV</td>
<td></td>
<td>15KV 15KV 15KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-15KV</td>
<td>4023124</td>
<td>15KV 15KV 15KV</td>
<td></td>
<td>15KV 15KV 15KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-25KV</td>
<td>4023195 + 4023139</td>
<td>25KV 25KV 25KV</td>
<td></td>
<td>25KV 25KV 25KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-30KV</td>
<td>4023155</td>
<td>30KV 30KV 30KV</td>
<td></td>
<td>30KV 30KV 30KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-30KV</td>
<td>4023155 + 4023139</td>
<td>30KV 30KV 30KV</td>
<td></td>
<td>30KV 30KV 30KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-40KV</td>
<td>4023206</td>
<td>40KV 40KV 40KV</td>
<td></td>
<td>40KV 40KV 40KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-40KV</td>
<td>4023206 + 4023139</td>
<td>40KV 40KV 40KV</td>
<td></td>
<td>40KV 40KV 40KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-50KV</td>
<td>4023203</td>
<td>50KV 50KV 50KV</td>
<td></td>
<td>50KV 50KV 50KV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTC2-50KV</td>
<td>4023203 + 4023139</td>
<td>50KV 50KV 50KV</td>
<td></td>
<td>50KV 50KV 50KV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increase of surge current

<table>
<thead>
<tr>
<th>Model MTC2</th>
<th>Max. surge current</th>
<th>Max. test voltage reduced to</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6KV</td>
<td>2000A</td>
<td>3KV</td>
<td>4023317</td>
</tr>
<tr>
<td>12KV</td>
<td>2000A</td>
<td>6KV</td>
<td>4023317</td>
</tr>
<tr>
<td>15KV</td>
<td>2000A</td>
<td>15KV</td>
<td>4023316</td>
</tr>
<tr>
<td>25KV</td>
<td>3500A</td>
<td>12KV</td>
<td>4023318</td>
</tr>
</tbody>
</table>

Advantage: Easier evaluation of low-resistance and low-inductive test objects

Increase of surge capacity to 200nF

<table>
<thead>
<tr>
<th>Model MTC2</th>
<th>Max. surge current</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6KV</td>
<td>800A</td>
<td>402327</td>
</tr>
<tr>
<td>12KV</td>
<td>1000A</td>
<td>4023237</td>
</tr>
<tr>
<td>15KV</td>
<td>1000A</td>
<td>4023237</td>
</tr>
<tr>
<td>25KV</td>
<td>1600A</td>
<td>4023140</td>
</tr>
</tbody>
</table>

Advantage: Easier evaluation of high-capacitive test objects

Further informations: www.schleich.com/en/mtc2
MTC2 25KV
- art. no. 4023195
- 25KV 25KV 25KV
- art. no. 4023150
- 1
- U-V-W | ground
- 2 + ground

MTC2 30KV
- art. no. 4023155
- 30KV 30KV 30KV
- art. no. 4023150
- 1
- U-V | ground
- 2 + ground

MTC2 40KV
- art. no. 4023206
- 40KV 40KV 40KV
- art. no. 4023150
- 1
- U-V | ground
- 2 + ground

MTC2 50KV
- art. no. 4023203
- 50KV 50KV 50KV
- art. no. 4023150
- 1
- U-V | ground
- 2 + ground

Included in the delivery extent
1. Automatic switchover of the test methods and the measuring clamps (connecting leads). Die Umschaltung der Widerstandsprüfung ist optional.
2. Automatic switchover of the test methods and the measuring clamps (connecting leads).

Test methods that needs to be ordered in addition
1. Serial interface to contact a GLP1- or GLP2-high-voltage tester. The high-voltage tester needs to be ordered in addition.
2. Armature booster only for MTC2 4023100, 4023101 and 4023124

Not available

Subject to technical modifications and errors.
Technical data

Test methods

Surge voltage test

<table>
<thead>
<tr>
<th>Test voltage</th>
<th>6KV portable</th>
<th>6KV</th>
<th>12KV</th>
<th>15KV</th>
<th>25KV</th>
<th>30KV</th>
<th>40KV</th>
<th>50KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joule</td>
<td>0.8J</td>
<td>1.8J</td>
<td>7.2J</td>
<td>11.25J</td>
<td>31.25J</td>
<td>45J</td>
<td>80J</td>
<td>125J</td>
</tr>
<tr>
<td>Surge current</td>
<td>400A</td>
<td>800A</td>
<td>1000A</td>
<td>1000A</td>
<td>1600A</td>
<td>2000A</td>
<td>2000A</td>
<td>2000A</td>
</tr>
<tr>
<td>Capacitor</td>
<td>20nF</td>
<td>100nF</td>
<td>100nF</td>
<td>100nF</td>
<td>100nF</td>
<td>100nF</td>
<td>100nF</td>
<td>100nF</td>
</tr>
<tr>
<td>Part no.</td>
<td>4023169</td>
<td>4023157</td>
<td>4023202</td>
<td>4023199</td>
<td>4023195</td>
<td>4023155</td>
<td>4023206</td>
<td>4023203</td>
</tr>
<tr>
<td>Part no. Caddy version</td>
<td>-</td>
<td>4023170</td>
<td>4023149</td>
<td>4023171</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Partial discharge test at the surge voltage test (optional)

<table>
<thead>
<tr>
<th>Test voltage</th>
<th>max. 25KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-detector</td>
<td>high-frequency antenna or coupler module (measurement in Gigahertz range)</td>
</tr>
<tr>
<td>Inception/ extinction voltage</td>
<td>automatic evaluation according to standard</td>
</tr>
<tr>
<td>Pulse rise time</td>
<td>60…200ns according to IEEE Std 522-2004</td>
</tr>
<tr>
<td>Switchover</td>
<td>automatically between test methods and the 4 connections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model MTC2</th>
<th>6…50KV</th>
<th>Portable-6KV</th>
<th>Caddy-15KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no.</td>
<td>40001574</td>
<td>40001697</td>
<td></td>
</tr>
</tbody>
</table>

Resistance test (optional)

<table>
<thead>
<tr>
<th>Resistance test</th>
<th>in 4-wire-technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>1mΩ…100KΩ-high accuracy</td>
</tr>
<tr>
<td>Switchover</td>
<td>automatically between test methods and the 4 connections</td>
</tr>
<tr>
<td>Evaluation deviation</td>
<td>yes, between the 3 phase resistances</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model MTC2</th>
<th>6KV</th>
<th>12KV/15KV</th>
<th>25KV/30KV/40KV/50KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>1mOhm …100Kohm</td>
<td>1mOhm …100Kohm</td>
<td>1mOhm …100Kohm</td>
</tr>
<tr>
<td>Resolution</td>
<td>1µohm</td>
<td>1µohm</td>
<td>1µohm</td>
</tr>
<tr>
<td>4-wire-technology</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Room temperature compensation</td>
<td>yes, optional (401404)</td>
<td>yes, optional (401404)</td>
<td>yes, optional (401404)</td>
</tr>
<tr>
<td>Automatic switchover</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Part no.</td>
<td>4023103</td>
<td>4023193</td>
<td>4023150</td>
</tr>
</tbody>
</table>
Connections

Depending on the tester’s configuration, the MTC2 features up to four connections for connecting the winding to the tester. Each MTC2 design also provides an additional connection for connecting the test object’s cabinet.

Connecting scheme of the four-wire measuring leads with a connected motor

There are the following measuring paths:

1 <-> 2 | 2 <-> 3 | 3 <-> 1
1 <-> 4 | 2 <-> 4 | 3 <-> 4

The test leads are switched to the different connections based on a relay matrix in the tester.

The integrated automatic test method and measuring lead switchover capabilities, offer the ability to switch between test methods on different test leads. With a tester with four connections and a test object with an accessible start point, the user can measure phases individually. This increases the tester’s sensitivity, compared to competitive products.
The Accessory

RS232-interface
- Remote-control of the tester via e.g. a PLC
- Read-out of test results
- Transfer of order data

| Part no. | 4003779 |

Connection extension to 8 winding connections

Test voltage	max. 15KV
Surge current	max. 2000A
4-wire-technology	yes
Part no.	4023270

Team-viewer software
- In case of questions remote control of the tester by SCHLEICH
- Fast support
- Safe and approved connection

| Part no. | 40031248 |

Carrying handle

Model MTC2	6KV/12KV/15KV
Swivellable	yes
Part no.	4023236

Kelvin clamp small

Type	small
Opening width	10 mm
Pressure intensity	20N
4-wire-technology	yes
Measuring lead pluggable*	yes
Dimensions (L x H x W)	90 x 35 x 13 mm
Part no.	4023184

Kelvin clamp medium

Type	medium
Opening width	20 mm
Pressure intensity	30N
4-wire-technology	yes
Measuring lead pluggable*	yes
Dimensions (L x H x W)	165 x 41(65) x 20 mm
Part no.	4023122

Kelvin clamp large

Type	large
Opening width	33 mm
Pressure intensity	100N
4-wire-technology	yes
Measuring lead pluggable*	yes
Dimensions (L x H x W)	255 x 95 x 25 mm
Part no.	4023109

Transport case
- Solid outdoor housing
- Perfectly suitable for wind turbines, military application, on-site service etc.

Model MTC2	6KV/12KV/15KV
Castors	yes
Shock absorber	yes
Color	black
Weight (tare)	19.5 kg
Dimensions (W x D x H)	625 x 980 x 333 mm
Part no.	4023225

> **Note:** Tester is firmly installed in the transport case

* The already existing measuring leads can be plugged on the Kelvin clamps.

Warning lights

The warning light indicates the following conditions:
- **Green** = high-voltage switched off
- **Red** = high-voltage switched on

<table>
<thead>
<tr>
<th>Indications</th>
<th>Lead length</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>red/green</td>
<td>2 m</td>
<td>4003508</td>
</tr>
</tbody>
</table>

Foot switch to start the test

<table>
<thead>
<tr>
<th>Lead length</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 m</td>
<td>4010611</td>
</tr>
</tbody>
</table>

Test cover model 1

- **Overall dimensions (Wx Dx H)**: 546 x 775 x 520 mm
- **Inside dimensions (Wx Dx H)**: 495 x 730 x 305 mm
- **Integrated result lights**: 2 pcs. (1 x GO/ 1x NO GO)
- **Test voltage**: max. 8KV AC
- **Safety**: Kat. IV
- **Part no.**: 400201

Test cover model 10

- **Overall dimensions (Wx Dx H)**: 935 x 880 x 585 mm
- **Inside dimensions (Wx Dx H)**: 800 x 810/730 x 500 mm
- **Integrated result lights**: 2 pcs. (1 x GO/ 1x NO GO)
- **Test voltage**: max. 8KV AC
- **Safety**: Kat. IV
- **Part no.**: 400281

Rolling table with horizontal work disc

- **Overall dimensions (Wx Dx H)**: 700 x 870 x 1010 mm
- **Drawer**: no
- **Intermediate floor**: no
- **Base plate**: no
- **Castors**: yes
- **Castor diameter**: 120mm
- **Push handle**: yes
- **Part no.**: 124.982.0

Rolling table with horizontal work disc and drawer

- **Overall dimensions (Wx Dx H)**: 700 x 870 x 1010 mm
- **Drawer**: yes
- **Intermediate floor**: yes
- **Base plate**: yes
- **Castors**: yes
- **Castor diameter**: 120mm
- **Push handle**: yes
- **Part no.**: 124.981.0

Note: The rolling tables may also be manufactured according to your request.

For further accessory please take a look at our website.
Take advantage from our many years of experience and comprehensive know-how in the applications of electric motors- and winding testing as well as in the electric safety- and function testing. Whether single testers, combination testers or complex test systems – with SCHLEICH you found the perfect partner at your side.

Electric motors- and winding testers

- MotorAnalyzer 1+2: Multi-purpose testers for electric motors and windings
- MTC2: Multi-purpose winding testers
- EncoderAnalyzer: Testers for checking shaft encoders
- Dynamic MotorAnalyzer: Online Monitoring
- MTC3: Multi-purpose winding testers
- GLP2: Multi-purpose motor testers
- Bonding machines

Electrical safety- and function testers

- Handheld: Mobile multi-purpose testers
- GLP1: Safety- and functional testers
- GLP2: Safety- and functional testers
- GLP3: Multi-purpose Windows®-testers

Presented by:

Schleich GmbH
An der Schleuse 11
58675 Hemer | Germany
Phone +49 (0) 23 72-94 98-0
Fax +49 (0) 23 72-94 98-98
info@schleich.com
www.schleich.com